Modified Bayesian Kriging for Noisy Response Problems for Reliability Analysis

نویسندگان

  • Nicholas J. Gaul
  • Mary Kathryn Cowles
چکیده

This paper develops a new modified Bayesian Kriging (MBKG) surrogate modeling method for problems in which simulation analyses are inherently noisy and thus standard Kriging approaches fail to properly represent the responses. The purpose is to develop a method that can be used to carry out reliability analysis to predict probability of failure. The formulation of the MBKG surrogate modeling method is presented, and the full conditional distributions of the unknown MBKG parameters are presented. Using the full conditional distributions with a Gibbs sampling algorithm, Markov chain Monte Carlo is used to fit the MBKG surrogate model. A sequential sampling method that uses the posterior credible sets for inserting new design of experiment (DoE) sample points is proposed. The sequential sampling method is developed in such a way that the newly added DoE sample points will provide the maximum amount of information possible to the MBKG surrogate model, making it an efficient and effective way to reduce the number of DoE sample points needed. Therefore, the proposed method improves the posterior distribution of the probability of failure efficiently. To demonstrate the developed MBKG and sequential sampling methods, a 2-D mathematical example with added random noise is used. It is shown how, with the use of the sequential sample method, the posterior distribution of the probability of failure converges to capture the true probability of failure. A 3-D multibody dynamics (MBD) engineering block-car example illustrates an application of the new method to a simple engineering example for which standard Kriging methods fail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Bayesian Kriging for noisy response problems and Bayesian confidence-based reliability-based design optimization

The objective of this study is to develop a new modified Bayesian Kriging (MBKG) surrogate modeling method that can be used to carry out confidence-based reliability-based design optimization (RBDO) for problems in which simulation analyses are inherently noisy and standard Kriging approaches fail. The formulation of the MBKG surrogate modeling method is presented, and the full conditional dist...

متن کامل

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

Design and Analysis of “Noisy” Computer Experiments

Recently there has been a growing interest in using response surface techniques to expedite the global optimization of functions calculated by long running computer codes. The literature in this area commonly assumes that the objective function is a smooth, deterministic function of the inputs. Yet it is well known that many computer simulations, especially those of computational fluid and stru...

متن کامل

Bayesian Melding of Deterministic Models and Kriging for Analysis of Spatially Dependent Data

The link between geographic information systems and decision making approach own the invention and development of spatial data melding method. These methods combine different data sets, to achieve better results. In this paper, the Bayesian melding method for combining the measurements and outputs of deterministic models and kriging are considered. Then the ozone data in Tehran city are analyze...

متن کامل

Bayesian Inference for Inverse Problems Occurring in Uncertainty Analysis

The inverse problem considered here is the estimation of the distribution of a nonobserved random variable X , linked through a time-consuming physical model H to some noisy observed data Y . Bayesian inference is considered to account for prior expert knowledge on X in a small sample size setting. A Metropolis-Hastings-within-Gibbs algorithm is used to compute the posterior distribution of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015